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Energy levels of screened Coulomb and Hulthen potentials 

S H Patil 
Department of Physics, Indian Institute of Technology, Bombay 400 076, India 

Received 8 September 1983 

Abstract. We have investigated the structure of the energy levels of the screened Coulomb 
and Hulthkn potentials near the critical coupling strengths. Incorporating this structure 
and using the strong-coupling series for the energy levels, we obtain expressions which 
give satisfactory values for the energy levels of all the states. 

1. Introduction 

The screened Coulomb potential is of importance in several contexts. It may be used 
as a rough approximation to the potential experienced by electrons in an atom where 
the remaining electrons screen the nuclear charge. It describes the shielding effect in 
plasmas where it is called the Debye-Huckel potential. It is also present in nuclear 
interactions as the dominant Yukawa potential arising from the. exchange of particles 
with non-zero mass. In all these cases, a knowledge of the various bound-state energies 
is essential for understanding and correlating the properties of the different systems. 
Another potential of some interest is the HulthCn potential which is closely related to 
the screened Coulomb potential. Its behaviour for small r is similar to that of the 
screened Coulomb potential, but it goes to zero a little more slowly for large r. The 
main advantage of the HulthCn potential is that it yields closed, analytic solutions for 
the s waves, and therefore is often used as an approximation for the screened Coulomb 
potential. However, one does not have such nice solutions for higher partial waves. 
The usefulness of the HulthCn potential would be enhanced if one obtained accurate 
energies for the non-zero angular momentum states as well. 

There have been a large number of varied attempts to deduce the bound-state 
energies of the screened Coulomb and HulthCn potentials. They may be classified into 
the following broad groups. 

(1) Some attempts are based on approximating the given potential by a suitable 
potential for which solutions are known (Ecker and Weizel 1956, Lam and Varshni 
1976, Ray and Ray 1980, Dutt et al 1981, Dutt and Mukherji 1982). The correction 
due to the small difference may be evaluated perturbatively (Smith 1964). 

(2) Variational approaches based on different forms of the trial wavefunctions 
have been used to estimate the bound-state energies. While earlier efforts (Harris 
1962) were not particularly successful, more recent calculations (Greene and Aldrich 
1976, Roussel and O’Connelll974) have provided very accurate values for the energies. 

(3) Several calculations are based on the fact that both screened Coulomb and 
HulthCn potentials allow a strong-coupling expansion. This allows one (Iafrate and 
Mendelsohn 1969, Muller-Kirsten and Vahedi-Faridi 1973, McEnnan et a1 1976) to 
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obtain quite satisfactory bound-state energies for large coupling constants. However, 
the rate of convergence of the strong-coupling series is a serious problem for smaller 
values of the coupling constant. Fortunately, it appears (Lai and Lin 1980, Lai 1981) 
that the use of Pad6 approximants greatly aids the convergence of the series. 

(4) Finally one has the very accurate numerical calculations of Rogers et ul (1970) 
who have obtained the bound-state energies of all the states with n 9, n being the 
principal quantum number for a large range of coupling strengths. It may also be 
noted that Green (1982) has recently given a quite accurate semi-empirical expression 
for the energy eigenvalues of the Yukawa potential. 

One of the characteristics of the screened Coulomb and Hulthen potentials is that 
their bound-state energies are 'functions of essentially only one variable which may be 
taken to be the charge Z. A difficulty in the use of the strong-coupling expansion in 
powers of 1/Z is the nature of the series. While the series is convergent for the 
HulthCn potential, it is only asymptotic (Mehta and Patil 1978) for the screened 
Coulomb potential. It would be useful to clarify the structure of this asymptotic series. 
Another important property of these potentials is that for any finite Z, the potentials 
support only a finite number of bound states. For every bound state there is a critical 
strength Z, of the coupling constant at which the binding energy is zero and the bound 
state disappears for Z < 2,. A really satisfactory analytic description of the bound-state 
energies must incorporate the correct behaviour of the energies near Z = Z,. 

Here we try to analyse the nature of the strong-coupling series for the bound-state 
energies. With the use of the WKB approximation and the Bender-Wu (1969,1973) 
formalism, it is shown that the series is asymptotic for the screened Coulomb potential. 
As such, the series is useful only for large values of Z. Our main effort is directed 
towards understanding the behaviour of the energies near Z = Z , .  We first deduce 
the general behaviour in terms of the properties of the poles of the T matrix near the 
critical value Z,. This behaviour is different for s, p and higher partial waves, and is 
controlled by the value of Z,, the residue and the value of aE/dZ at Z=Z,. The 
values of Z, correspond (Schey and Schwartz 1965) to changes in the signs of the 
phase shifts, and can be deduced from the perturbation series (Patil 1981) for the 
scattering length and its generalisations to higher partial waves. We develop sum rules 
which allow us to obtain quite accurate values for scattering lengths and the residues. 
One can also obtain satisfactory estimates for aE/aZ by using the Hellmann-Feynman 
theorem and the WKB wavefunctions. Finally we propose an interpolation for the 
bound-state energies which incorporates the required behaviour near the critical 
strength Z, and also has a strong-coupling expansion in conformity with the first few 
known terms of the strong-coupling expansion. We have applied these results to the 
screened Coulomb and HulthCn potentials. The predictions of their energies, governed 
by the above constraints are in very good agreement with the numerical (Rogers et a1 
1979), variational (Roussel and O'Connell 1974) results and those based on Pad6 
approximants (Lai and Lin 1980), over the entire range of n, 1 and Z values. What 
is more, we are now in a position to give the energy of almost any state for any value 
of the coupling strength Z. 

In § 2 we develop the formalism which can be used to obtain the energy levels of 
a class of one-parameter potentials. These potentials have a strong-coupling expansion 
and support a finite number of bound states. The formalism is utilised to obtain the 
bound-state energies of (1) the screened Coulomb potential in § 3 and (2) the HulthCn 
potential in § 4. In 0 5, the significance of these results is discussed. 
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2. The general approach 

We are interested in solutions to  the radial Schrodinger equation (in atomic units) 

-$d2/dr2 - I (  1 + l ) / r 2 ] R ( r )  +ZV( r)R( r )  = ER( r )  

V( r )  = -( 1 /  r ) f (  Ar). 

V, ( r )  = - ( l / r )  e-Ar, (2 .3)  

VII(r) = - ( l / r ) A r  eCA'/(l -e-Ar).  

(2 .1)  

where V ( r )  is of the form 

(2 .2)  

Two particular realisations of special interest are the screened Coulomb potential 

and the Hulthtn potential 

(2.4) 

The energy eigenvalues of (2 .1)  are known to be functions of essentially only one 
variable. 

2.1. Scaling 

Let E be characterised by Z and A. Now consider a scale transformation 

r +  r / Z  

which takes (2 .1)  into 

- i[d2/dr2 - 1 ( I  + 1 ) /  r2]R - (1/ r )  f ( Ar/Z)R = Z-*E (Z ,  A )R.  

This leads to the relation 

Z- 'E(z ,  A )  = E ( 1 ,  A /Z) .  

Thus, apart from the factor of Z2 ,  one may regard the energy levels as being functions 
of only one variable 

E = A/Z. (2.8) 

In particular one may take A = 1 without any loss of generality. An expansion in 
powers of E then allows us to obtain a strong-coupling series for the energy levels. 

2.2. Strong-coupling expansion 

If f ( rA)  has an expansion 

(2 .9)  

one can obtain the solution to (2 .1) ,  as a perturbation series in powers of E.  For 
example, it has been shown (Iafrate and Mendelsohn 1969, Muller-Kirsten and Vahedi- 
Faridi 1973, McEnnan et a1 1976) that 

(2 .10)  - 2 E / Z 2  = n-'+ 2B1 E + &(3n2-  x ) s 2 +  B,n2( 1 + 5n2-  ~ x ) E , + .  . . 
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where n is the principal quantum number and x = I ( I  + 1). The utility of this strong- 
coupling expansion depends on the nature of convergence of the series. The nature 
of the series is governed by the asymptotic behaviour of V ( r )  For E + 0,. For example, 
in the case of the Hulthtn potential, the potential vanishes in the limit r + CC for E + 0, 
as well as for E + 0-, and the strong-coupling series converges for Z > Z,. However, 
in the case of the screened Coulomb potential, while the potential vanishes in the limit 
r + cc for E + O,, it diverges exponentially for E + 0-. As a consequence, the series in 
(2 .10 )  is only asymptotic. Of course, even this series is quite useful for small E .  

In all these cases, the series either diverges as Z + Z, or converges very slowly. 
Therefore, to obtain an accurate representation of the energy levels, one must under- 
stand the behaviour of E near Z=Z,. 

2.3. Bound states as  poles 

The behaviour of the energy levels near the critical coupling strength Z, can be 
effectively analysed in terms of bound states regarded as poles of the T matrix. 

At the critical value Z,, the bound state energy is zero. Therefore, expanding T;' 
near Z=Z,,  one gets for small q 2  ( q  is the momentum) 

(e1') sin a[)/ q2It1 = [ d ( Z  - Z,) + aq2 - iq2"' I - ' .  ( 2 .11 )  

Since the bound state corresponds to the pole, this leads to the following relations for 
the energy levels near Z = Z,: 

2 E  = - d 2 ( Z - Z , ) 2 + O [ ( Z - Z , ) 3 ]  for l = O ,  ( 2 .12 )  

2 E = - ( d /  a )  (2 - Z,) + ( i/ a) [  - ( d /  a ) ( Z  - Z,) 13'2 + O[ ( Z  - Z,) ' 3  

2 E = - ( d  / a )  ( Z  - Z,) + O [ ( Z  - Z,) 'I 

for 1 = 1, 
(2 .13 )  

(2 .14)  

It may be noted that for attractive potentials, d < 0 and a < 0. Furthermore, for Z >  Z,, 
the bound state corresponds to a positive imaginary value for q so that the second term 
in (2 .13)  is also negative. Equations (2 .12) - (2 .14)  are our basic relations governing 
the behaviour of the energy levels near Z = Z,. It is interesting to note that for the 
HulthCn potential, one has the exact solution for the s waves 

2 E ,  7 -n-'(Z- n 2 / 2 ) 2  (2 .15)  

for 12 2. 

in conformity with (2 .12 ) .  
The parameters which determine the behaviour of the energy levels near Z, are: 
(1) the critical coupling strength Z,, 
( 2 )  the residue of the pole, l / d ,  
( 3 )  the derivative dE/dZ which is equal to - d / 2 a  for 1 # 0. 

These parameters for low-lying states are closely related to the perturbation series for 
the Ti matrix for small q2.  

2.4. Perturbation series for  TI 

The partial-wave projection of-the T matrix may be written as 

T,(q) = - ( 2 n  el'lsin 81)/4 = lom F ( q ,  r )  dr (2 .16 )  
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where 

with 

(2.17) 

(2.18) 

(2.19) 

where j l  and nl are spherical Bessel functions of the first and second kind. For small 
q2,  we expand the various terms in powers of q 2 ,  and retain the first two terms. Defining 

(2.20) D(q,  r) ={[(21+1)!!]2/4.1rq2f}F(q, r) = A ( r ) + q 2 B ( r ) + O ( q 4 ) ,  

one obtains 

A (  r) = Z V (  r)r  21+2 2 2  V(r)r*'+' lOX-&A(r') dr' ,  
(21 + 1) 

(2.21) 
V(r)r2'+' 

2 2  
(2 2 + 1)( 21 + 3) 

~ ( r ) r ~ " ~ -  
Z 

B(r)=-- 
(21+3) 

1 X loX --& [ (21-1 21+1 r', - r2)  A ( r I )  + (2  I + 3) B ( r ') d r ' . 

These equations are very convenient for iteration and lead to the perturbation series 
for T,(q) for small q :  

where 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

It is known that the high-order coefficients of a power series are dominated by the 
nearest singularity. Assuming that the nearest singularity corresponds to the pole in 
(2.11), we get on expanding (2.11) in powers of Z and using (2.22), 

a, - (2dZa")-'  
.E'S 

f o r l = O  (2.28) 
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In particular, taking the ratio of two successive terms, one obtains 

a,la1+1- zc for all 1, (2.30) 
I - =  

~ c ~ ~ 1 + 1 1 ~ 1 + 1 -  b,/a,) - a l d  for If 0. (2.31) 

These two relations together allow us to determine two of the parameters which 
determine the behaviour of the lowest energy level for a given I ,  near Z = Z , .  In 
principle, one could subtract the pole correspohding to (2.11) from the series in (2.22) 
and repeat the procedure (Patil 1981) for the next level. However, this requires very 
accurate values for the coefficients a, and b,, and we will use relations (2.30) and (2.31) 
only for the lowest-lying levels. For levels with large quantum numbers, it is convenient 
to use WKB relations to deduce the parameters. 

1-= 

2.5. W K B  relation for Z, 

Within the framework of WKB approximation, it has been shown (Trubnikov and 
Yavlinskii 1965) that for the screened Coulomb potential, one has the relation 

z,+$.rrn2 for n + m .  (2.32) 

This relation has been generalised by Chadan (1968) using the Jost function description, 
to the form 

Z c + n 2 n 2 / 2 [  lox (-V(r))"'dr] for n + m .  (2.33) 

I t  is worthwhile rederiving this relation using the WKB approach since it provides us 
with an insight into its do,main of validity. We start with the first-order WKB relation 

[r:pdr=r;(n,+$) (2.34) 

2 

where 

P = [ ~ ( E - z v ) - ( ~ + $ ) * / ~ ~ ] " ~ ,  (2.35) 

r l ,  r2 are turning points and n, is the radial quantum number. For Z=Z, one has 
E = 0. Taking the derivative of the two sides of (2.34) with respect to Z,, we get 

(22,)'/2 jrl [- V(r) - (/+t)2/2zcr2]1/2' 
an, 1 r2 V(r) d r  
az, .rr---=-- (2.36) 

For Z, >> ( I  +$)*,  and for the short-range potentials, this relation leads to 

7~ an,/aZ, = (22c)-"2 [- V( r)]'" dr. (2.37) 

On integration with respect to Z,, and noting that for fixed I ,  n, + n for n, + E, one 
gets (2.33). This derivation is useful since it also points out that (2.33) may be used 
for finite Z,, provided Z, >> ( l+$) ' .  Therefore it is suggestive that we use for extension 
to finite n 

(2.38) 

loX 

Z, = (con + c1 + c2/n)* 
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where 

co= 7r/2'l2 los (-V(r)) 'l2 dr, 

c1= 6,+S,l ,  

c2 = ao+ a l l  + a,12. 

(2.39) 

(2.40) 

(2.41) 

Higher powers of 1 in c1 and c2 than those involved would invalidate (2.37) even for 

Our procedure to determine Z, will be to use (2.38) which is essentially an expansion 
in inverse powers of n, and determine the parameters So, 61, ao,  a ' ,  a2 so as to give 
the correct values of Z, for the low-lying states as determined by (2.30) or the 
Schey-Schwartz (1965) approach. In practice, the expression in (2.38) is found to 
give a fairly accurate representation of Z,. 

z, >> ( 1 + $ ) 2 .  

2.6. W K B  expression for d E / a Z  

For obtaining aE /aZ, we start with the Hellmann-Feynman theorem: 

aE/az = ( $ 1  V ( r ) I $ ) / ( $ l $ ) .  (2.42) 

We evaluate this expression at Z = Z,, using WKB wavefunctions: 

(2.43) 

where x( r )  = r$( r ) ,  and 

p = [ - 2 Z , V ( r ) - ( I + t ) 2 / r 2 ] ' ' 2 .  (2.44) 

However, since $( r )  -+ r-'-' for r + m ,  the denominator in (2.42) diverges for l S $ .  
Therefore the contribution to the denominator from the region r > r2 is quite important 
for I near i, especially for I = 1. The WKB wavefunction for r > rz is 

(2.45) 

We substitute these wavefunctions in (2.42), replace the square of the sine function 
by its average value, and retain only the leading contribution from the region r > r2 
to obtain 

-(2Z,)-"2 j? [- V( r)]"* d r  
for I >  1, (2.46) 

d r / p (  r )  + r: / (21 + 1)( 21 - 1) 

where the numerator has been evaluated by assuming Z, >> ( I  + 4)'. Since this relation 
is obtained by assuming that the wavefunction has a large number of oscillations, it is 
valid for large n,. We may regard it as the leading term in the expansion in inverse 
powers of . i r (n,+$)  which is a measure of the largeness of the variable of the sine 
function (see (2.34)). For using the expression in (2.46) for smaller n,, we introduce 
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a multiplicative factor [l +A/(n ,+$)]  and determine A so as to give the correct value 
of aE/aZ as determined from (2.31) for n,=O (recollect that aE /aZ=-d /2a  at 
Z = Z,). Finally we get 

(2.47) 

where A is to be chosen so as to yield the value of d / a  obtained from (2.31) for n, = 0 
(say for n = 2, I = 1). 

2.7. Sum rules for 1 / d 

It is found that as Z increases, the scattering length goes through a series of poles at 
the critical values Z,. We may generalise the behaviour of the scattering length to 
higher partial waves by defining 

xI  = lim [-(ei6[ sin 6 1 ) / q 2 ' + 1 ]  (2.48) 
q - 0  

which according to (2.1 l ) ,  has the behaviour 

X I  = ( - l / d ) / ( Z - Z J ,  z = z,. (2.49) 

We now consider the possibility that x1 may be represented by a sum of such poles. 
This idea has been found to be quite useful (Patil 1981) for I = 0. Designating the 
successive critical strengths for a given I by Z,( I )  and the corresponding residues by 
R,( I) we get 

(2.50) 

where we have introduced a factor of Z/Z,( I )  which does not alter the residue, so as 
to ensure that x1 vanishes at Z = 0. for the residue we use the form 

R, = Z,( fo+  f l / n  + f2 /n2+ .  . . ). (2.51) 

Here we have suppressed the dependence of R, and Z, on 1. Expanding x1 in powers 
of Z and using the series expansion in (2.22) one gets a set of sum rules: 

[(2I+1)!!12( -f";z-fl;z-f2;E+...)' 1 1 1 
2 

a, = 

where we use Z, given in (2.38), and the summation is over 
satisfactory to retain only the first two or three terms in 

i = 1 , 2 , .  . . , 
(2.52) 

n > 1. It is usually quite 
R, and determine the 

parameters fo, f i ,  . . . from the relations in (2.52). This will allow us to obtain R, and 
hence the parameters d, = -1/ R,. Actually we will be using sum rules of the type in 
(2.52) only for s and p waves. In particular, the determination of R, for the s wave 
will give us a very useful representation for the scattering length: 

(2.53) 
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One is now in a position to deduce all the parameters which determine the behaviour 
of the energy levels near 2 = 2,: the critical coupling strengths are determined from 
(2.38), aE/aZ from (2.47), the residue R, = - l / dn  from (2.51) and the sum rules in 
(2.52). 

2.8. General expression for E,( 1) 

We supplement the information about the small-a behaviour in terms of the strong- 
coupling expansion with that near the critical coupling strength. One can now try a 
simple interpolation between these two regions. Since the behaviour near Z = Z, is 
different for different partial waves, their interpolation also will be different. 

For the s wave, we use 

c2( 1 - z,&)3 
1 + C 3 E  + c4a2+ C5E3 

2En - (1 - z,&)2c6 + for 1=0 (2.54) Z 2  

where c6= d i ,  and determine the parameters c2, c 3 ,  c4 and c5 so that this expression 
agrees with the small-a expansion in (2.10) up to terms. The expressions for the 
parameters in terms of the expansion coefficients in (2.9) are 

c6 = d; ,  c 2 = l / n  -c6,  

c4=c: +3c3Z,+32;  +(1/~,)(2;~6-3n*B2),  (2.55) 

c5 = 2 c3 c4 - c: + 32, ( c4 - c: ) - 322, c3 - z’, - n ’( 1 + 5 n 2, B ~ /  c2, 

where d, = - l /R,  with R, given in (2.51). 

and an on I will not be indicated explicitly) 

~3 = -32, - (21 ~ 2 )  ( c d n  + BI), 2 

For the higher partial waves we use an interpolation (the dependence of Z,, d,  

2E, c2( 1 - Z,&)2 

Z2 Cg(l-Z,E)+C,(l - z n E ) 3 ’ 2 +  for 1 # 0 (2.56) --= 
1 + C 3 E  + C4&2+ C5E3 

wherec,=d,,/a,Z,,, ~ ~ = - ( d , / a , , ) ~ ’ ~ ( l / a , Z ~ ’ ~ ) f o r  I =  1 but c7=Ofor I >  1. Asbefore, 
we determine the parameters c2, c3 ,  c4 and c5 so that the expression agrees with the 
small-e expansion in (2.10) up to terms. The expressions for the parameters in 
terms of the expansion coefficients in (2.9) are 

c6 = dn/ anzn, 

c 7 -  - -C ; ’~ (Z , /~ , )  for I =  1, c7=0 for1>1,  

c2=1/n2-c,-c7,  ~3 =-2Zn +(1 /~2)( -2Bi  - c,Z~ - 5 ~ 7 z n ) ,  (2.57) 
c4=  c: +~z,,c,+z; +(1/c2)[8c7zZ, - ~ ~ ( 3 n ~ - x ) l ,  

c5 = 2c3c4- c: + 2Z,c4- 2 ~ , 4  -z2,c3 + (1/c2)[&z3,c7- B,n2(1 + 5n2-  3x11, 

where d,/a, is given by (2.47) and d, = - l / R n  is obtained from (2.51). 
Thus (2.54) and (2.56) provide us with closed expressions which allow us tocalculate 

the energy levels of any state for any short-range potential with an expansion of the 
form given in (2.9). In the following we apply these results to the screened Coulomb 
and HulthCn potentials. 



5 84 S H Patil 

3. The screened Coulomb potential 

For the screened Coulomb potential given in (2.3), one has the expansion coefficients 
B1=- l ,  E l 2 = $ ,  B3=-d etc so that 

- 2 E / Z 2 =  l / n 2 - 2 &  +4(3n2-x)c2- in2(1  +5n2-3x)e3+ .  . . (3.1) 

where x = I (  I + 1). It is found that the coefficients of the series increase rather rapidly. 
We first show by using the Bender-Wu (1969, 1973) method that the series is 
asymptotic. 

3.1. Asymptotic series 

Consider the solution to (2.6) for small negative e. For large r, the potential tends to 
large negative values: 

As a result, a bound particle can now escape. The escape probability P is given by 
(Bender and Wu 1969, 1973) 

P = 2 I m  E,, =4.rrlR(r)~*ur (3.3) 

where R ( r )  is to be evaluated at a large value of r, in particular at r greater than rt, 

This is the classically allowed escape region. 
We use the WKB approximation (Bender and Wu 1969, 1973) for R ( r ) ,  

for 

1 << r, << rtr r0 < r < r,, 
where 

p( r )  = [--I/ n 2 +  (2/r)  e" ' - ( I  ++)2/r2]1'2 

(3.5) 

For E + 0- and r + rt, the leading term in the integral is rt/n, so that 

for E + 0-. Im E,( 1, e )  - exp(-(2/ nl el)[ln( 1/1 el)  + O(ln In e ) ] }  (3.8) 
Writing once-subtracted dispersion relations (Bender and Wu 1969,1973) for E,( 1, E ) ,  

but not including possible contributions from singularities away from the origin, we get 

One can expand the second term in powers of E and obtain 

Im E, ( l ,  E ' )  N 
E,(l, e )  = 1 g,el+- de' ,  

1=0 
(3.101 
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where 

(3.11) 

Substituting for Im &(l, E )  from (3.8), we can deduce the leading behaviour for gi : 

Clearly, the series is asymptotic. In particular we note that 

ai+, /a i  + - (in/2)/[ln i + O(ln In i)]  for i-Co. (3.13) 

For n = 1, i = 8, this has a value of about 1.92 whereas the correct value (Iafrate and 
Mendelsohn 1969) is about 3.28. This means that for i = 8, one cannot as yet neglect 
ln(1n i )  terms. 

3.2. Perturbation series 

The perturbation series in (2.22) for small q 2  determines the relevant parameters for 
the energy levels near Z = Z , .  The coefficients in (2.22) are determined by iterating 
(2.21) and using (2.24)-(2.27). The coefficients for the first few partial waves are 
given in table 1. From (2130) and (2.31), it then follows that 

Z1(l = 0) = 0.8386, (3.14) 

Z,( 1 = 1) = 4.524, 

Z,( I = 2) = 10.893, 

(3.15) 

(3.16) 

a / d  = 3.888 for 1 = 1, n = 2. (3.17) 

The critical strengths are in reasonable agreement (witihin 0.5% with the accurate 
numerical values (Rogers et a1 1970, Greene and Aldrich 1976). The predictions for 
other partial waves are accurate to about the same extent. In principle, one could 
now subtract the series corresponding to these poles from the perturbation series and 
look for the critical strengths for higher levels. But the results of such a sequential 
analysis (Patil 1981) are less accurate. 

Table 1. The expansion coefficients a , ( / )  and b, ( l )  of ti in (2.22) for the screened Coulomb 
potential. 

I a, (1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

- 1.000 
-1.000 
-1.151 
-1.364 
-1.623 
-1.934 
-2.306 
-2.750 
-3.279 
-3.910 

-6.000 
-5.000 (-1) 

-1.530 (-2) 
-3.177 (-3) 
-6.820 (-4) 
-1.487 (-4) 
-3.269 (-5) 
-7.212 (-6) 
-1.594 (-6) 

-7.945 (-2) 

4 (1) 

2.400 (1) 
-1.700 
-4.138 (-1) 
-9.678 (-2) 
-2.311 (-2) 
-5.571 (-3) 
-1.345 (-3) 
-3.238 (-4) 
-7.764 (-5) 
-1.853 (-5) 

-1.200 (2) 
-1.500 
-6.233 (-2) 
-3.878 (-3) 
-2.895 (-4) 
-2.374 (-5) 
-2.051 (-6) 
-1.827 (-7) 
-1.659 (-8) 
-1.523 (-9) 
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3.3. Critical strengths 

We now use (2.38) to obtain a general expression for Z,,(I). The integral in (2.39) 
gives for the screened Coulomb potential, 

CO = ( 7r/4)ll2. (3.18) 

The coefficients Ljl, 62, ao, a l  and a2 are determined so as to give the correct critical 
strengths for the first five low-lying states (e.g. three of them are given in (3.14)-(3.16), 
slightly more accurate values are given by Schey and Schwartz (1965) or Rogers et a1 
( 1970)). This gives us 

Z,( I) = [( ~ / 4 ) ’ / * n  +0.015 4014+0.227 31 I 

+ (0.014 8326 + 0.162 861 + 0.053 914I2)n-’I2 (3.19) 

which predicts the critical strengths of all the states with n S 9 to  an accuracy of about 
1 O/O . 

It is interesting to compare our expression for the critical strengths with that of 
Green (1982), 

(3.20) 

S1 = 1.1335(1+y1+6:),Z1 =0.8399(1 +aI+j312). Green’sexpressionisagoodoverall 
fit to the critical strengths of the states with n 9, and its values are within 0.4% of 
the exact values (Rogers et al 1970). On the other hand, our expression is a fit to  
the low-lying states and an extension to the higher states based on the expansion in 
(2.38). As such, the accuracies of the two expressions in terms of average errors are 
comparable. It may be noted that in Green’s expression, Zn(I)’l2 is strictly linear in 
n whereas our expression has an additional l / n  term. It should also be observed the 
coefficient of n in Green’s expression has a slight I dependence ( y  and 6 are quite 
small). For I = 0 it has the value l/So = 0.8822 which is quite close to  the exact value 
of ( ~ / 4 ) ” ~ = 0 . 8 8 6 2  in the limit of large n. 

Z,( I )  = [S;’n + z : / ~  - S;’ ( I  + 1)12, 

3.4. Expression for dE/aZ 

The integrals in (2.47) can be evaluated in the limit of large Z. The turning points 
satisfy the condition 

Z c e - ‘ / r =  ( l+ t )2 /2r2  (3.21) 

which for large Z, gives 

rl = ( I + f ) 2 / 2 ~ , ,  (3.22) 

r2 = ln[2Zc/( I + f)’] + O( In In Z,). (3.23) 

For large Z,, the integral in the numerator tends to ( 2 ~ ) ” ~ .  For the integral in the 
denominator, the main contributions come from the regions near the turning points. 
We divide the region of integration into two parts, one from r1 to ro, 

ro= 1 - ( 2 ~ , ) - ’ ( I + f ) ~ ,  (3.24) 
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and the other from r,, to r2. Retaining the leading terms for large Z, in the integrations, 
one obtains 

d 7 = 2( T/Z,)”~[I  + A /  (n, + 5 ) ]  
U 

(3.25) 

The numerical factor 6.3166 in the denominator comes from the summation of the series 

(2n + l)!! f = 6.3166 ,,=,, 2”-’n! (2n + 1)2 
(3.26) 

which results from the integration. Though these integrations are evaluated for large 
Z,, they are found in general to  be quite close (within a few percent) to the values 
which follow from numerical integrations. 

Finally, the value of A is determined by requiring that d / a  = 0.26 for 1 = 1, n = 2, 
which follows from (3.17). Thus the parameters for d / a  in (3.25) are 

A--0.1033, (3.27) 

ro= 1-(2Z,,)-’(/+i)*, (3.28) 

and r2 is determined from 

r2 = 1 n [ 2 ~ , /  ( I  +;)’I +In r2 (3.29) 

by iteration. It may again be recollected that aE/aZ at Z=Z, is equal to -;(d/a) 
for 1 # 0. 

3.5. Sum rules for residues 

We need to know the residues R, = -l/d,, for 1 = O  and 1 = 1 states (see (2.55) and 
(2.57)). For this we use the sum rules in (2.52). 

For 1 = 0, we retain only the f l  and f2  terms. Using ai in table 1, and the values 
of 2, in (3.19) for 1 =0, the sum rules for i = 1 and 2 give 

The solutions yield for the residues 

R,(O) =Z,(0)(1.707 84/n-0.358 99/n2) (3.31) 

in terms of which one can get d, = -l/R,. The justification for not considering fo, 
f 3  and higher terms, is that the above residue satisfies the higher-order sum rules quite 
accurately. For example, the sum rule in (2.52) for i = 3 reads 

- 2 . 3 0 2 ~ ~ 1 . 7 0 3  78fi-1.695 59f2. (3.32) 

The above values of fi and fi give a value of -2.301 for the right-hand side. 
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The determination of R,(O) and Z,,(O) provides a closed expression for the scattering 
length in (2.53): 

1.707 84 0.358 99 Z 

n2 ) (Z-Z,(O)) (3.33) 
x o = 5  ( - 

n = l  n 

Z,(O) =[(n/4)”’n +0.015 4014+(0.0148 326)(l/n)I2. 

The prediction for the scattering length for several values of Z are  given in table 2, 
and are  seen to be in good agreement with the numerical solutions (Patil 1981). 

Table 2. Predictions for the scattering length for the screened Coulomb potential, based 
on (2.53) ,  compared with the numerical solutions of the Schrodinger equation. 

Predicted 
scattering Numerical values 

Z length xg of xo 

0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 
9.5 

12.0 
15.0 
20.0 

-2.207 
2.125 

-1.13 
10.57 

2.97 
1.04 

-2.91 
13.8 

2.87 
-4.36 

4.21 
30.3 

-2.207 
2.128 

-1.11 
10.47 

2.95 
1.04 

-2.91 
13.7 

2.84 
-4.38 

4.19 
29.7 

For 1 = 1, the f o  and f l  terms are  adequate. Using a, in table 1 for I = 1, and the 
values of Z,(1) in (3.19) fo r  1 = 1, one gets for  the i = 1 and 2 sum rules in (2.52), 

- $  = -0.664 4fo - 0.192 98f1, -$=-0.070 5Ofo-0.030 39f,. (3.34) 

R,( I )  =Zn(1)(2.8978-3.0644/n). (3.35) 

The residues which follow from the solutions to  these equations a re  

These solutions for f o  and f l  satisfy the i = 3 sum rule to  within a few percent accuracy. 

3.6. Expressions for E,, (1) 

The interpolating expressions for the energy levels E,( I )  which incorporate the 
behaviour for small E and for Z near the critical strength a re  given by (2.54)-(2.57), 
with B1 = -1, B2 = $ and B3 = -1/6. For the s wave, one uses (2.54) and  (2.55), and 

l /d ,  = -Z,(0)(1.707 84 /n  -0.358 99/n2). 

For higher partial waves, we use (2.56) and (2.57), with 
(3.36) 

l /d ,  = -Z,,(1)(2.8978-3.0684/n) for 1 = 1 (3.37) 

and d,/a, given by (3.24). The critical strengths Z,,(l) are taken from (3.19). 
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The values of the energy levels calculated are in quite good agreement with the 
numerical values of Rogers et a1 (1970) (some of them are given in tables 3,  4 and 
5 ) .  Following Green (1982), we state the accuracy of our results in terms of the 

Table 3. Predicted values of - 2 E / Z Z  for some states with n 
values of Rogers et al (1970) given in brackets. 

4, along with the numerical 

State \=, 500 100 50 30 20 10 5 1 

1s 0.9960 
(0.9960) 

2P 0.2460 
(0.2460) 

3s 0.1072 
(0.1072) 

3d 0.1072 
(0.1072) 

4P 0.058 59 
(0.058 59) 

4f 0.058 57 
(0.058 57) 

0.9801 
(0.9801) 
0.2305 

(0.2305) 
0.092 40 

(0.092 401 
0.092 12 

(0.092 12) 
0.044 62 

(0.044 63) 
0 044 19 

(0.044 20) 

0.9606 
(0.96061 
0.2119 

(0.21191 
0.076 03 

(0.076 04) 
0.075 01 

0.030 45 
(0.030 47) 
0.028 93 

(0.028 98) 

(0.0!5 03) 

0.9350 0.9036 0.8141 0.6535 0.020 48 
10.9350) (0.9036) (0.8141) (0.6536) 10.020 57) 
0.1886 0.1615 0.093 23 0.008 49 

(0.1886) (0.1615) (0.093 07) (0.008 20) 
0.057 41 0.038 63 0.006 35 

(0.057 44) (0.038 70) (0.006 42) 
0.054 85 0.033 57 

(0.054 94) (0.033 83) 
0.016 35 0.005 20 

(0.016 38) (0.005 20) 
0.012 83 

(0.01302) 

Table 4. Predicted values of -2E /Z2  for some states with n = 5, 6, 7, along with the 
numerical values of Rogers et al  (1970) in brackets. 

5s 

5 g  

6P 

6h 

7s 

7g 

500 

0.036 15 
(0.036 15) 
0.036 11 

10.036 11 j 
0.023 98 

(0.023 98) 
0.023 93 

(0.023 93) 
0.016 69 

(0.016 68) 
0.016 65 

(0.016 65) 

300 200 

0.033 73 0.030 88 
(0.033 73) (0.030 88) 
0.033 63 0.030 66 

(0.033 63) (0.030 66) 
0.021 66 0.018 99 

(0 021 671 (0.018 99) 
0.021 53 0.018 69 

(0.021 53) (0,01870) 
0.01449 0.01204 

(0.014 49) (0.012 04) 
0.01440 0.011 84 

10.01440) (0.011 84) 

100 

0.023 32 
(0.023 32) 
0.022 52 

(0.022 53) 
0.012 27 

(0.012 28) 
0.01 1 26 

(0.01 1 28) 
0.006 33 

(0.006 34) 
0.005 70 

(0.005 73) 

70 

0.017 90 
(0.017 92) 
0.016 42 

(0.016 46) 
0.007 884 

(0.007 90) 
0.006 09 

(0.006 14) 
0.003 10 

(0.003 11 j 
0.002 11 

(0.002 15) 

50 40 30 

0.012 03 
(0.012 06) 
0.009 48 

(0.009 57) 
0.003 71 

(0.003 73) 
0.000 98 

(0.001 01) 
0,000 71 

(0.000 71) 

0.008 02 0.003 35 
10.008 05) (0.003 37) 
0.004 55 

(0.004 6 5 )  
0.001 42 

(0.001 43) 

0.000 01 
(0.00001j 

Table 5. Predicted values of -2E /Z2  for some states with n = 8.9, along with the numerical 
values of Rogers et al (1970) in brackets. 

Z 
State 500 400 300 200 100 70 

8P 0.011 98 0.011 17 0.009 91 0.007 67 0.002 92 0.000 77 
(0.011 98) (0.011 17) (0.009 91) (0.007 67) (0.002 94) (0.000 78) 

0.007 41 0.002 18 8h 0.01 1 93 0.011 10 0.009 78 
(0.011 93) (0.011 10) (0.009 78) (0.007 42) (0.002 21) 

9s 0.008 79 0.008 03 0.006 86 0.004 87 0.001 17 0.000 06 
(0.008 79) (0.008 03) (0.006 87) (0.004 88) (0.001 17) (0.000 06) 

9g 0.008 76 0.007 98 0.006 78 
(0.008 761 (0.007 98) (0.006 78) (0.004 71) (0.000 78) 

91 0.008 67 0.007 85 0.006 55 0.004 26 0.002 33 
(0.008 67) (0.007 85) (0.006 55) (0.004 26) (0.002 33) 

0.004 70 0.000 76 
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expression 

Y,, = Z [ 1  + ( 2 / z 2 ) n 2 ~ , ( I ) ] .  (3.38) 

The average absolute percentage departure of our values for Y,,, from the exact values 
given by Rogers et a /  (1970) is about O.O6%, with the largest deviation being about 
0.38%. Of course, for Z near the critical values Z,( I ) ,  E,( I )  is close to zero and small 
deviations in Y,,! are reflected as relatively large percentage errors in E,,(l). 

We note that the simple behaviour of Y,, for large 2 noted by Green (1982) is 
related to the strong coupling expansion in (3.1). Using the first two terms in (3.1) 
one gets for Y,, 

Y,, - 2n2. (3.39) z-s 

It is also interesting to observe that Green’s expression (1982) for the energy of I = 0 
states has only a first-order zero at the critical strength Z,,(O), whereas our general 
result in (2.12) indicates a second-order zero. However, Green’s expression has another 
factor Z- 1.9875(n+0.003 951)2+ 1.2464 n2 which has a zero fairly close to the 
critical strength. 

4. Hulthen potential 

For the Hulthen potential given in (2.41, the expansion coefficients are 

B 2 = h ,  B3 = 0. (4.1) B --I 
1 - 2 ,  

In this case one has closed solutions for the s waves, with the energies given in (2.15). 
We will therefore concentrate on the higher partial waves, i.e. waves with 1 1. 

4.1. Perturbation series 

Iterating (2.21), we can get the coefficients in (2.22). They are given in table 6, for 
the 1 = 1 and 2 partial waves. Froni these we obtain by using (2.30) and (2.31), 

Z2( 1 = 1) == 2.65, (4.2) 
Z,( 1 = 2) 6.33, 

a l d  = 5.17 for 1 = 1, n =2 .  

For the n = 3, 1 = 2 case, the ratio of the coefficients a,, is still decreasing slowly and 
the value of Z3(l = 2) given in (4.3) is the ratio extrapolated to larger i values. 

4.2. Critical strength 

For extrapolating the critical strengths to other values of n and 1, we use (2.38). The 
integral in (2.39) is carried out to give 

CO = 112112. (4.5) 

Z,,(O) = n2/2, (4.6) 

It is interesting to notice that this is in conformity with (2.15) for 1 = O .  Since the 
s-wave critical strengths are given by 
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Table 6. Expansion coefficients a 8 ( l ) ,  b , ( l )  and a,(2) of f ,  in (2.22) for the Hulthen 
potential. 

i 0, (1) b, (1) a, (2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

--2.4886 (1) 
-4.1737 
-1.2063 
-4.0869 (-1) 
-1.4714 (-1) 
-5.4384 (-2) 
-2.0341 (-2) 
-7.6514 (-3) 
-2.8862 (-3) 
-1.0901 (-3) 

1.4520 (2) 
-2.3368 (1) 
-1.1198 (1) 
-4.8170 
-2.0532 
-8.6999 (-1) 
-3.6590 (-1) 
-1.5268 (-1) 
-6.3235 (-2) 
-2.6009 (-2) 

-7.2598 (2) 
-2.1730 (1) 
-1.8031 
-2.0906 (-1) 
-2.8076 (-2) 
-4.0592 (-3) 
-6.1078 (-4) 
-9.4020 ( - 5 )  
-1.4667 ( - 5 )  
-2.3064 (-6) 

one has a,,= aO=O in (2.40) and (2.41). For simplicity we neglect the a’ term in 
(2.41). The fits to the Z, values in (4.2) and (4.3) then give 

Z,( 1) = [2-”’n + 0.16451 + 0.09831/ n]’. (4.7) 

4.3.  Expression for d / a  

For evaluating the integrals in (2.47), we note that the turning points satisfy the 
condition 

An analysis similar to that carried out for the screened Coulomb potential leads to 

dn - = { 7r(2/Z,)’/2[1 + A / (  n, + 1/2)]} 
a n  

for 12 1, 
6.3166 

(4.9) 

where 

ro = 2 - ( 1/22,)( 1 +4)’ 
and r2 is determined by iterating the equation 

r2 = ln[2Z,/(1+$)’]+ln[r:/(l -e-‘2)]. (4.10) 

The quantity A is chosen so as to give d / a  = 0.19 for 1 = 1, n = 2, corresponding to 
the value given in (4.4) and comes out to  be 

A=-0.188. (4.1 1) 
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4.4 Sum rules for residues 

We are  interested in the residues for the 1 = 1 states (see (2.57)). For this we use the 
sum rules in (2.52) with i = 1 and 2, and retain only the fo and f l  terms. With the 
Z,(I = 1) values given in (4.7), one gets 

-5.53 = -1.096fO- 0.3238f1, -0.927 = -0.2012f,-0.087 72fl. (4.12) 

The residues which follow from these equations a re  

R, ( 1 ) = Z, ( 1 ) ( 5.97 8 - 3.1 5 5 /  n ) , (4.13) 

and d, =-l/R,. It may again be mentioned that these solutions for fo and fl satisfy 
the i = 3 sum rule as well, within an accuracy of a few percent. 

4.5. Expressions for E,( I )  

The energy levels a re  obtained from (2.56) and (2.57), with B1 = -4, B2 =A, B3 = 0. 
One  has 

l /d ,  = -Z,( 1)(5.978-3.155/4 f o r I = l ,  (4.14) 

and d,/a, is given by (4.9). The critical strengths Z,(l) are taken from (4.7). 
The predictions for a few low-lying states a re  given in table 7, and compared with 

the values calculated by Lai and Lin (1980). The agreement between the two sets of 
values is generally good, the maximum disagreement being about 6%. One  may now 
use (2.56) t o  obtain the energy levels of almost any bound state with 1 # 0 ( I  = 0 levels 
being trivially given by (2.15)), of the HulthCn potential. 

Table 7. Predicted values of - 2 E / Z Z  for n S 4 states with 1 f 0, along with the results of 
Lai and Lin (1980) given in brackets. 

S t x  0.025 0.05 0.075 0.10 0.15 0.20 0.35 

2P 0.225 52 0.202 08 
(0.202 09) 

3P 0.087 417 0.066 37 
(0.087 414) (0.066 33) 

3d 0.087 205 0.065 49 
(0.087 206) (0.065 51) 

4P 0.039 90 0.022 15 
(0.039 90) (0.022 12) 

4d 0.039 69 0.021 36 
(0.039 69) (0.021 33) 

4f 0.039 38 0.020 09 
(0.039 38) (0.020 12) 

0.179 70 

0.0480 33 

0.045 98 

0.009 31 7 
(0.009 244) 
0.007 750 

(0.007 668) 
0.005 114 

(0.005 112) 

0.158 36 0.118 89 0.083 79 0.007 675 
(0.158 36) (0.083 77) (0.007 558) 
0.032 44 0.009 399 

(0.032 11) (0.008 932) 
0.028 78 0.002 751 

(0.028 97) (0.002 782) 
0.001 504 

(0.001 508) 

5. Discussion 

It is clear that the structure of the energy levels near the critical strengths is a significant 
input towards our understanding of the energy levels of the screened Coulomb and 
HulthCn potentials. The  perturbation series for the t-matrix (2.23) and the WKB 
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analysis of the relevant parameters allow us to  make quite accurate predictions not 
only for all the energy levels, but also for the scattering length. 

We  conclude by making two observations. 
(1) It may be noted that the approach outlined is applicable to  a general class of 

potentials which a re  essentially functions of only one  parameter and which have a 
strong-coupling expansion for the energy levels. In addition to the energy levels, our  
knowledge of the d and a parameters allows us to determine the phase shifts for small 
q 2  from (2.11). 

(2) There is some similarity between our analysis and the analysis of the hydrogen 
atom in a strong magnetic field. In the case of the magnetic field, it is found (Galindo 
and Pascual 1976, Patil 1982) that incorporating the asymptotic behaviour of the 
energy levels greatly enlarges the utility of the asymptotic series. In our  case, it is the 
inclusion of the behaviour near the critical strength of the coupling which allows us 
to give an  accurate representation of the energy levels. 
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